From Passwords to Pass-the-Hash: Why Credentials Are Still the #1 Attack Vector

By Lucio Rodrigues

In the ever-evolving threat landscape, one thing remains shockingly consistent: **compromised credentials** are still the leading cause of data breaches.

Despite advancements in **EDR**, **XDR**, and **Zero Trust** models, attackers continue to exploit poor password hygiene, misconfigured authentication mechanisms, and legacy protocols to breach even the most "secure" infrastructures.

This post explores the evolution of credential attacks, with a focus on **Pass-the-Hash (PtH)**, why it remains effective, and how organizations can remediate this persistent threat.

Abbreviation Summary

MFA - Multi-Factor Authentication

PtH - Pass-the-Hash

NTLM - Network Trust Level Manager (Legacy authentication protocol)

AD - Active Directory

RDP - Remote Desktop Protocol

EDR - Endpoint Detection and Response

SIEM - Security Information and Event Management

LAPS - Local Administrator Password Solution

LSA - Local Security Authority

LSASS - Local Security Authority Subsystem Service

PPL - Protected Process Light

Sysmon - System Monitor (Windows logging tool)

ACL - Access Control List

C2 - Command and Control

SMB - Server Message Block

PsExec - Process Execution

Real-World Impact: The Credential Crisis

According to Verizon's 2024 Data Breach Investigations Report (DBIR):

- 86% of web application breaches involved stolen credentials.
- **74% of all breaches** involved the human element, primarily weak passwords and phishing.
- Only **28% of organizations** enforce Multi-Factor Authentication (MFA) enterprise-wide.
- Over 80% of ransomware attacks started with credential access (via brute force or phishing).
- More than 40 million passwords were found exposed on the dark web in 2024 alone (Digital Shadows report).

These statistics make it clear: passwords are no longer just a user issue, they're a **security** architecture issue

From Passwords to Pass-the-Hash (PtH)

Credential attacks have matured beyond brute-force logins. Today, adversaries often leverage **post-exploitation credential theft techniques**, such as **Pass-the-Hash**, which exploit flaws in Windows authentication.

Mhat is Pass-the-Hash?

Pass-the-Hash is a technique where an attacker, having obtained a **hashed version of a user's NTLM password**, can authenticate to other systems **without knowing the actual password**. It abuses the fact that NTLM authentication only requires the hash itself.

This technique is still effective in many enterprise environments running Active Directory with default configurations.

X Typical Workflow:

- 1. **Initial Access:** Via phishing, RDP brute force, or exploiting a service.
- 2. Privilege Escalation: The attacker elevates privileges using exploits or misconfigurations.
- 3. Credential Dumping: Tools like Mimikatz or LSASS memory scraping reveal NTLM hashes.
- 4. Lateral Movement: The hash is reused on other systems to move laterally using PsExec, WMI, or SMB.

Tools Commonly Used

Tool	Purpose
Mimikatz	Extracts plaintext creds, hashes, tickets
Impacket	Performs SMB relay, PtH attacks
Evil-WinRM	Remote PowerShell with PtH support
CrackMapExec	Automates lateral movement and PtH
Rubeus	Kerberos ticket manipulation (used in conjunction with PtH)

Why PtH Still Works

Despite being documented since 1997, PtH remains effective due to:

- Overuse of **NTLM** (instead of Kerberos)
- Lack of Credential Guard or LSA protection
- Local Admin reuse across machines
- No network segmentation
- Plaintext hashes in memory (if WDigest is enabled or memory is unprotected)

Organisations failing to properly secure their **authentication infrastructure** are vulnerable to **entire domain** compromise from a single foothold.

Remediation Strategies

1. Enforce Strong Authentication

- Implement Multi-Factor Authentication (MFA) across all access points.
- Disable NTLM where possible; enforce Kerberos for internal auth.
- Use certificate-based logins or smart cards where feasible.

2. Harden Local Accounts

- Use **LAPS** to rotate local admin passwords uniquely across endpoints.
- Avoid account reuse across the domain, especially privileged accounts.

🔽 3. Enable Credential Guard

- Deploy Windows Defender Credential Guard to block access to LSASS memory.
- Set RunAsPPL to protect LSASS at boot time.

4. Monitor and Detect

- Use **Sysmon** and **Windows Event Logs** to detect credential dumping attempts.
- Monitor for anomalous lateral movement behavior: PsExec, RDP logons, SMB connections.
- Use **SIEM rules** to alert on:
 - Multiple failed logons from a single IP
 - NTLM authentication in Kerberos-preferred networks
 - o Mimikatz signatures or PowerShell obfuscation

✓ 5. Network Segmentation and Least Privilege

- Use **firewall rules and VLANs** to limit lateral movement.
- Apply **principle of least privilege**: users should not have local admin unless strictly necessary.
- Remove unnecessary **SMB** shares or disable administrative shares.

6. Regular Credential Hygiene Audits

- Periodically check for stale accounts, shared accounts, and accounts with no MFA.
- Audit passwords against known breach dumps using tools like HaveIBeenPwned or pwdump-checkers.

Pentesting Reflection

During my pentesting labs and red team simulations, **credential access is often the first and most reliable path to full domain compromise**. Combined with improper privilege management can allow **domain admin access in under 30 minutes**.

Simulating **PtH** and credential theft scenarios allows me to demonstrate how easily attackers can escalate privileges and move laterally in under-secured environments. It also showcases my ability to provide **defensive recommendations** that align with real-world risks and architecture.

Final Thoughts

Credential theft isn't going away, it's evolving. As long as organisations rely on outdated protocols and ignore identity-centric threats, techniques like Pass-the-Hash will continue to be exploited.

The solution lies not only in **strong passwords**, but in building a **resilient identity infrastructure**, one where authentication is layered, monitored, and hardened against misuse.